Wire Coil 470UH 3A Toroidal Core Inductor
Due to the symmetry of a toroid, little magnetic flux escapes from the core (leakage flux). Thus a toroidal inductor/transformer, radiates less electromagnetic interference (EMI) to adjacent circuits and is an ideal choice for highly concentrated environments. Manufacturers have adopted toroidal coils in recent years to comply with increasingly strict international standards limiting the amount of electromagnetic field consumer electronics can produce.
In general, a toroidal inductor/transformer is more compact than other shaped cores because they are made of fewer materials and include a centering washer, nuts, and bolts resulting in up to a 50% lighter weight design. This is especially the case for power devices.
Because the toroid is a closed-loop core it will have a higher magnetic field and thus higher inductance and Q factor than an inductor of the same value with a straight core (solenoid coils). This is because most of the magnetic field is contained within the core. By comparison, with an inductor with a straight core, the magnetic field emerging from one end of the core has a long path through air to enter the other end.
In addition, because the windings are relatively short and wound in a closed magnetic field, a toroidal transformer will have a lower secondary impedance which will increase efficiency, electrical performance and reduce effects such as distortion and fringing.